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Abstract. An exactly solvable generalization of the intensity-dependent Jaynes–Cummings
model to the case ofN0 atoms is introduced together with its solution. The quantum dynamics
of the model including the squeezing properties of thesu(1, 1) Perelomov and Glauber coherent
states is investigated. The cases of one and two atoms present in the cavity are analysed in detail.
These two cases are compared in the situation when the atomic subsystem is initially prepared in
the ground state, the Dicke state and the state of thermal equilibrium.

1. Introduction

In this paper we study effects of nonlinear atom–field interactions within a model whose
coupling constant depends on the intensity of the field. This model, which we solve exactly,
is a generalization of the intensity-dependent Jaynes–Cummings model (IDJC) to the case of
N0 atoms in the cavity, and can thus be called theintensity-dependent Tavis–Cummings model
(IDTC). The IDJC model is a quantum model describing the interaction of a monochromatic
electro-magnetic field with one two-level atom in a cavity. The Hamiltonian of this model can
be expressed in the form

HID = ωN + 1
2ω0σ

z + ig(
√
Na†σ− − a

√
Nσ +). (1)

Herea†, a are the usual operators of the Heisenberg–Weyl algebra: [a, a†] = 1, a†a = N ;
σ z, σ± are Pauli matrices andω is the frequency of the monochromatic field, whileω0 is the
resonance frequency of the two-level atom. The model equation (1) was first introduced in [1],
and later analysed in [2]. Aq-boson generalization of this model was introduced in [3].

As is evident from the Hamiltonian equation (1), a characteristic feature of the IDJC model
is that coupling between the monochromatic field and the atom is proportional to

√
N . This is

why the model can be calledintensity-dependent. Admittedly this kind of coupling between
the field and the atom is rather peculiar and may require further justification. In this respect it is
worth mentioning that such a justification is required for any quantum-optical model based on
the two-level atom approximation. The Hamiltonian describing the interaction of the two-level
system with the quantized field mode should be understood as ‘effective’. This means that
only two atomic levels are effectively singled out from the energy spectrum. This operator
includes two field operators related to the ground and excited states in question as well as an
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operator multiplier related to the dipole transition. These operators are expressed in terms
of the Bose operators of the quantized field mode in a very complicated way. They should
account for various Stark shifts of the quantum levels as well as for the dependence of the
dipole moment of the quantum transition on the state of the exciting field. It is possible in
principle to explain how to construct these effective operators for any atomic Hamiltonian and
for any pair of the quantum levels using Kato’s transformation operator (cf [4]) and the secular
operator of degenerate perturbation theory. It is also worth mentioning that generalized Jaynes–
Cummings models in general have recently become the subject of intense attention [3, 5, 6].
These considerations support the theoretical interest in the model equation (1) since this kind
of interaction means effectively that the coupling constant is proportional to the amplitude of
the cavity field which is a very simple case of a nonlinear interaction. Another reason for this
kind of coupling is that the time evolution of all physical quantities of the IDJC model isstrictly
periodic and can be expressed in closed form rather than as an infinite series, which is usually
the case for Jaynes–Cummings-type models. Thus the model equation (1) may be considered as
a useful theoretical laboratory in which time evolution of a variety of initial states of the system
can be analysed. This can also give insight into the behaviour of other quantum systems with
strong nonlinear interactions. An interesting example of such an interaction, though different
to the

√
N term considered here, is the nonlinear Jaynes–Cummings dynamics of a trapped

ion reported in [7,8].
The IDJC model is also interesting because of its inherent connection to ansu(1, 1)

Jaynes–Cummings model, described by the Hamiltonian

HK = ω(K0 − κ) + 1
2ω0σ

z + g(K+σ
− +K−σ +). (2)

Here the operatorsK±,K0 satisfy the commutation relations of thesu(1, 1) algebra:

[K0,K±] = ±K± [K−,K+] = 2K0 (3)

while κ is the so-called Bargmann index.
The connection between the models of equations (1) and (2) results from a bosonic

realization of thesu(1, 1) algebra forκ = 1
2, namely

K+ = i
√
Na† K− = −ia

√
N,K0 = N + 1

2 . (4)

This case reduces exactly to the IDJC model. The model equation (2) is also connected to the
case in which atomic transitions are mediated by absorbtion and emission of two photons. This
case has extensively been studied in the existing literature [9], and is found from equation (2)
through another bosonic realization of thesu(1, 1) algebra [10,11].

The analytical formulae describing the quantum dynamics of the two-photon JC model
are, however, much less transparent than those of the IDJC model. Other interesting bosonic
realizations of thesu(1, 1) algebra also exist.

In this paper we analyse the quantum dynamics and consider in particular the squeezing
properties of the Perelomov [11] and Glauber [12] coherent states of the intensity-dependent
Tavis–Cummings model given by the Hamiltonian

H = ωN + ω0S3 + ig(
√
Na†S− − a

√
NS+). (5)

Notations are the same as in equation (1) apart from the operatorsS3, S±, which are the
collective spin variables ofN two-level atoms,

S± =
N0∑
i=1

σ±i S3 = 1
2

N0∑
i=1

σ 3
i

that satisfy the usualsu(2) algebra:

[S3, S±] = ±S± [S+, S−] = 2S3.
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The structure of the spin-configuration spaceHN0 of the atomic subsystem is given in
appendix A.

As indicated above, the operatorsK± andK0 given by equation (4) provide the particular
bosonic realization of thesu(1, 1) algebra related to the Bargmann indexκ = 1

2. Thus the
quantum spaceH of the model equation (5) is given byH = HB

⊗
HN0, whereHB is the

space of the corresponding representation of thesu(1, 1) algebra:

|n〉 = 1

n!
Kn

+ |0〉
K0|n〉 = (n + 1

2)|n〉
K+|n〉 = (n + 1)|n + 1〉
K−|n〉 = n|n− 1〉.

(6)

The time evolution of an initial state can be obtained by application to that state of an evolution
operatorU(t) that can be constructed through a complete set of eigenfunctions|ν〉 of the
Hamiltonian equation (5), namely

U(t) =
∑
ν

|ν〉〈ν| exp(−iEνt). (7)

Thus in order to construct the operatorU(t) we have to first solve the eigenvalue problem

H |ν〉 = Eν |ν〉 (8)

whereν is a set of quantum numbers to be specified below. The eigenstates|ν〉 are constructed
in the form (for details, see [10])

|ν〉 =
M∑
n=n0

A
M,r,j
n+r |n〉 ⊗ |M − n− r, r〉 (9)

for each blockHr in equation (40) (cf appendix A). Here the quantum numberj is

06 j 6 M − n0 + 1 (10)

and

n0 = max(M − 2r, 0).

Thus the set of quantum numbers characterizing the basis of each spaceHr for a given
eigenvalueM of M̂r is ν = (M, r, j).

The coefficientsAνn+r are

Aνn+r+1 = Aνn0+r

n∏
k=n0

ck+ryk+r n0 6 n 6 M − 1 (11)

whereyk+r , n0 6 k 6 n, are given by

yk+r = 1 +
dk+r−1

1 +
dk+r−2

1 + . . . 1 +
dn0+r+1

1 +dn0+r

(12)

dn+r−1 = −n2(M − n + 1)(2r −M + n)/pnpn−1. (13)

Here

cn+r = pn

(n + 1)
√
(M − n)(2r + 1−M + n)

(14)

pn = −1

g
(ωn + ω0(M − n− r)− Eν). (15)
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The eigenvaluesEν of the problem equation (8) can be found from algebraic equations,

2rM2 = pMpM−1yM+r−1. (16)

For the caseω = ω0,N = 2, r = 1, andM > 1, e.g., these eigenvalues are

EM,1,k = ω(M − 1) + (−1)kg
√

2(M2 + (M − 1)2) k = 1, 2

EM,1,3 = ω(M − 1). (17)

In section 2 we apply these results to investigate the quantum dynamics for a variety of initial
states of the quantum system. The properties of the Glauber and Perelomov coherent states [11]
will be investigated and discussed.

2. Squeezing in the case of two atoms

We shall exemplify the application of the results given in the previous section in the simplest
nontrivial case, which is that of two atoms,N0 = 2, r = 0, 1.

For simplicity we shall only consider the case of exact resonance between the field and
the two-level atom, which meansω0 = ω, i.e.ε = 0.

In this case the evaluation of the eigenfunctions|ν〉 in the form of equation (14) is rather
straightforward.

If r = 0, then|M, 0, j〉 = |M〉 ⊗ |0, 0〉, andj = 1.
If r = 1 andM = 0, then|0, 1, j〉 = |0〉 ⊗ | − 1, 1〉, andj = 1.
If r = 1 andM = 1, then|1, 1, j〉 = A1,1,j

2 |1〉⊗|−1, 1〉+A1,1,j
1 |0〉⊗|0, 1〉, andj = 1, 2.

Here

A
1,1,j
1 = (−1)j

√
2

2
A

1,1,j
2 = −

√
2

2
E1,1,j = (−1)j+1g

√
2.

(18)

In the caser = 1,M > 1, k = 1, 2; j = k, 3; the eigenfunction is

|M > 1, 1, j〉 = AM,1,jM+1 |M〉 ⊗ | − 1, 1〉
+AM,1,jM |M − 1〉 ⊗ |0, 1〉 +AM,1,jM−1 |M − 2〉 ⊗ |1, 1〉. (19)

Notice that〈M > 1, 1, j |M > 1, 1, j〉 = 1. Here

A
M,1,k
M−1 =

M − 1√
2(M2 + (M − 1)2)

A
M,1,k
M = (−1)k

√
2

2

A
M,1,k
M+1 =

M√
2(M2 + (M − 1)2)

(20)

A
M,1,3
M−1 =

√
2AM,1,kM+1 A

M,1,3
M = 0 A

M,1,3
M+1 = −

√
2AM,1,kM−1 . (21)

We shall first assume that the active atoms and the monochromatic field are initially prepared
in a quantum state|80〉,

|80〉 = |ξ〉 ⊗
∣∣∣∣−N0

2
,
N0

2

〉
(22)

where|ξ〉 is the Perelomovsu(1, 1) coherent state forκ = 1
2, i.e.

|ξ〉 =
√

1− |ξ |2
∞∑
n=0

ξn|n〉 (23)

with ξ = |ξ |eiθ , |ξ | 6 1, while | − N0
2 ,

N0
2 〉 is the ground state for the atomic subsystem.
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In order to investigate the squeezing properties of these states, it is convenient to introduce
the field operator

X(t, ϕ) = 1
2(aei(ωt−ϕ) + a†e−i(ωt−ϕ)). (24)

This definition of the field operator suits well the actual method of measurement (square-law
detection) of the quantized field inside the cavity [13, 14]. Notice that the time dependence
introduced here has its origin in the probe field mode. This can be explained as follows.
The measuring device is a balanced heterodyne detector with a local oscillator tuned to the
resonance frequencyω. This method of measurement allows one to obtain the slowly varying
envelopes of the dispersions rather than their rapidly (with frequencyω) oscillating parts.

Assuming that the heterodyne mode is prepared in the coherent state with a large amplitude,
this mode can be considered as a classical field

1
2(γe−i(ωt−ϕ) + γ ∗ei(ωt−ϕ)). (25)

According to the standard experimental setup, this classical oscillator mode is mixed with
the cavity field which results in two side-band modes. Since the balanced heterodyne detector
measures the difference of the correlation functions of these side-band modes, the output signal
contains only the interference terms of the cavity and the heterodyne field components. This
explains how the probe field can be excluded from the consideration provided that its time
dependence is included into the cavity field. This provides us with a motivation to represent
the cavity field in the form given by equation (24). Specifying the value of the angleϕ, we
can denote

X1 = X(t, 0)
X2 = X

(
t,
π

2

)
.

(26)

We show below (see figure 1) that this choice does not restrict the generality of our results.
As can be readily seen, the dispersions of the operators equation (26), i.e.(1Xl)

2 ≡
〈X2

l 〉− 〈Xl〉2, calculated with respect to a coherent state|α〉, a|α〉 = α|α〉, of the Heisenberg–
Weyl algebra, are(1Xl)2 = 1

4, l = 1, 2. Thus a quantum state exhibits squeezing [15] when the
corresponding dispersions of the field operators fulfil the condition(1Xl)

2 6 1
4, either forl = 1

or for l = 2. For later convenience we introduce the quantitiesS(t, ϕ) ≡ 4(1X(t, ϕ))2 − 1
andSl(t) ≡ 4(1Xl)2 − 1, such that the squeezing condition reads

Sl(t) 6 0 for l = 1 or l = 2. (27)

It is also worth mentioning that, once the rapid oscillations with frequencyω are scaled out,
the squeezing no longer depends on the coupling constantg that only influences the timescale
of the quantum dynamics.

In the case of two atoms (N0 = 2), the functionS(t, ϕ) takes the form

S(t, ϕ) = 2(C2 − C2
1) cos 2(θ − ϕ) + 2C0 − 2C2

1 (28)

where

C0(t) = |ξ |2
1− |ξ |2 − 1− 〈8(t)|S3|8(t)〉

|8(t)〉 = U(t)|80(t)〉
(29)

while

〈8(t)|S3|8(t)〉 = −(1− |ξ |2){1 + 1
2|ξ |2(1 + cos(2

√
2gt))

−
∞∑
M=2

|ξ |2M
(M2 + (M − 1)2)2

{
(2M − 1)

(
(M − 1)2 − M

2

2

)
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Figure 1. The plot (I) of the functionS(t, ϕ) in the polar coordinates(x = t cosϕ, y = t sinϕ)
along with its projections on theZY (II) andZX (III) planes. The initial state of the field mode
is the Glauber coherent state withα = 0.5ei π2 , the initial state of the atomic subsystem is as in
equation (22), andN0 = 1(2) in (a) ((b)) figures.

−M
2

2
(2M − 1) cos 2

√
2(M2 + (M − 1)2)gt

−4M2(M − 1)2 cos
√

2(M2 + (M − 1)2)gt

}
(30)

and

C1(t) = ie−iωt+iθ 〈8(t)|a†|8(t)〉 = (1− |ξ |2)
∑
M>0

√
M + 1|ξ |2M+1 + |ξ |(1− |ξ |2) cos(

√
2gt)

+ trQ(1)P (1) +
∑
M>2

tr S(1)(M)T (1)(M) (31)

C2(t) = −e2i(θ−ωt)〈8(t)|(a†)2|8(t)〉 = (1− |ξ |2)
∑
M>0

√
(M + 1)(M + 2)|ξ |2M+2

+

√
2

5
|ξ |2(1− |ξ |2)(4 cos(

√
10gt) + 1) + trQ(2)P (2) +

∑
M>2

tr S(2)(M)T (2)(M).

(32)

The matricesQ(i), P (i), S(i) andT (i), i = 1, 2, are given in appendix B. Below we show in
graphical form that the presence of the second atom significantly changes the dynamics of the
field mode, as well as the dynamics of the atomic subsystem.

As mentioned above, we specify the value of the parameterϕ in the operator equation (24)
to be 0 orπ2 . This choice is justified by figure 1, where the plots of the functionS(t, ϕ) in
polar coordinates(x = t cosϕ, y = t sinϕ) are shown for the casesN0 = 1, 2. In this figure
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Figure 2. The behaviour as a function of time ofS1,2(t) for N0 = 1, 2 for the initial condition
equation (22). Plot (a) corresponds to|ξ | = 0.1, and plot (b) to |ξ | = 0.75;θ = π

2 in both graphs.

the field is assumed to be initially prepared in the Glauber coherent state

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 (33)

while the atomic subsystem is assumed to be in the ground state| − r, r〉 as in equation (22).
Figure 1(a) shows that in the caseN0 = 1 squeezing reaches its maximum in the directionϕ = 0
(y = 0). In the case of two atoms (figure 1(b)) the situation is different, since considerable
squeezing can be observed both forϕ = 0(y = 0) and forϕ = π

2 (x = 0). This means that
the quadraturesS1 andS2 are well suited for studying the squeezing properties of the system.
For the Perelomov coherent state|ξ〉, the plots of the functionS(t, ϕ) would be very similar
to those given in figure 1 for the Glauber coherent state. This means that squeezing can be
achieved in both cases.

The time dependences of the functionsS1(t) andS2(t) for the initial state of equation (22)
are shown in figure 2 for the cases of one and two atoms in the cavity. The dynamics of the
quantum system in the case of two atoms, even for a relatively small number of photons in
the cavity, is rather complicated. For example, the plots of the squeezing functionsS1 and
S2 in figure 2(a) for a low number of photons (|ξ | = 0.1) are quasiperiodic with a period
smaller(TR ∼ 2) than in the case of one atom (where indexR in TR refers to similarity with
the Rabi period). These functions are asymmetric with respect to the zero level and have
different magnitudes of oscillation (the amplitude ofS1 is considerably bigger than that of
S2). The plots describe continuous quasiperiodic functions obtained by summing up to 30 first
dominant terms in the series with respect toM given in equations (30–32). The convergence of
the series is mostly governed by the factor|ξ |2M and is therefore rather rapid. The remainder
of the series in which terms are smaller than e60 ln|ξ | is discarded. For comparison, the plots
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Figure 3. The average photon number forN0 = 1, 2 and for the initial condition equation (22).
Plot (a) corresponds to|ξ | = 0.1, and plot (b) to |ξ | = 0.75; θ = π

2 in both graphs.

for the case of one atom in the cavity (the Jaynes–Cummings model) are also shown. The
latter curves are periodic with the average Rabi frequency. Since the average number of
photons in the cavity is low in this case (of the order of one or smaller), this period, in the
chosen timescale, coincides with the classical periodTR ∼ π . These amplitudes noticeably
exceed the amplitude of initial squeezing of the Perelomov coherent state for both the one atom
and the two atoms case. As a consequence of equation (28), the contributions proportional
to 〈8(t)|a†a†|8(t)〉, 〈8(t)|aa|8(t)〉, 〈8(t)|a|8(t)〉2, 〈8(t)|a†|8(t)〉2 enter the function
S1 and S2 with alternating signs, while the contributions proportional to〈8(t)|a†a|8(t)〉
and 〈8(t)|a|8(t)〉〈8(t)|a†|8(t)〉 enter these functions with the same sign. Evidently, the
asymmetry with respect to the zero level and the different amplitudes of oscillation of the
functionsS1 andS2 are connected with the latter contributions. The plot of a part of these
contributions (the average photon number in the field mode) is shown in figure 3 for|ξ | = 0.1
and|ξ | = 0.75.

The contributions connected with the average number of photons cannot explain the
mentioned asymmetry, which, most probably, can be explained by the terms proportional
to 〈8(t)|a|8(t)〉〈8(t)|a†|8(t)〉. As is evident from figure 2(b) (|ξ | = 0.75), where the
asymmetry ofS1 andS2 is even more noticeable, the contribution of these terms increases
strongly for bigger|ξ |. This effect is related to the fact that the initial density matrix of the
field is not diagonal. To further investigate the similarities and differences in the dynamics
of one and two atomic systems it is interesting to consider a slightly different state than that
given by equation (22), namely

ρ = 1
2|ξ〉〈ξ | ⊗

1∑
r=0

| − r, r〉〈r,−r|. (34)

The similarity to the one-atom case arises from the fact that in this state the atoms cannot
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Figure 4. The behaviour as a function of time ofS1(t) for N0 = 1, 2. The initial condition of
the atomic subsystem is: (a) | − 1

2 ,
1
2 〉, (b) 1

2

∑1
r=0 | − r, r〉〈r,−r| and (c) | − 1, 1〉. The field is

prepared in the coherent state|α〉, arg(α) = π
2 .

absorb on the average more than one photon. On the other hand, the structure of the quantum
levels for this state remains the same as for the state equation (22). Figure 4 shows that
the dynamics of the two-atom system with the initial state given by either equation (22) or
equation (34) is very similar. This means that the main features of the dynamics are determined
by the structure of the quantum levels rather than a possibility to store more energy. In order
to thoroughly investigate how long time the field lives in the squeezed state, we introduce a
functionτ(|ξ |). This function can be defined as

τ(|ξ |) = lim
T→∞

1

T

L+1∑
n=0

(tn+1− tn)θ(−Sj (t (n))). (35)

Hereθ(x) is the Heavyside step function, the set{tn}Ln=1 are the zeros of functionSj (t) in
the time interval(0, T ), while t0 = 0 andtN+1 = T . These points may or may not be zeros
of Sj (t). Each of the pointst (n) is an arbitrary point belonging to the time interval(tn, tn+1),
and can be chosen, e.g., ast (n) = 1

2(tn + tn+1). The functionτ(|ξ |) is useful since it allows
us to verify the established squeezing properties in an arbitrary long timescale. The quantity
τ(|ξ |)TR shows the time within the quasiperiod within which the field can be found in the
squeezed state. In figure 5 we show the ‘lifetime’ in the squeezed state. In this figure the initial
state of the system is the same as in equation (34).

The spin configuration given in equation (34) can be prepared as follows. Let us consider
a two-atom state in which one atom is excited while the other is in the ground state. Should
we be able to distinguish which atom is the excited one before they enter the cavity, the spin
configuration of the atoms would be described by the state

|8at 〉 =
√

2

2
|0, 1〉 ±

√
2

2
|0, 0〉.
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Figure 5. The lifetime in the squeezed stateτ(|ξ |) for S1,2, N0 = 2, and for the initial condition
equation (34);θ = π

2 .

The triplet state|m, 1〉would decay with an exponential rate to the ground state|−1, 1〉while
the singlet state|0, 0〉 would remain intact since it does not interact with the field. This means
that the density matrix of the pure state|8at 〉〈8at | would evolve into that of the mixed state
equation (34). This method was proposed by Dicke in [18].

Figure 5 shows the threshold for squeezing in the quadratureS1 with respect to the
parameter|ξ | of the Perelomov state, while the quadratureS2 does not show squeezing but
approaches a constant nonzero value for increasing|ξ |. The latter effect demonstrates the
independence ofS2 on the number of photons in the field mode provided that this number is
big enough. It should be mentioned that this difference in the behaviour of the lifetimes ofS1

andS2 is connected with the chosen value of the phase of the Perelomov parameterξ (θ = π
2 ).

The introduced functionτ ensures that, by adjusting the parameterθ , it is possible to guarantee
the existence of squeezing, (and vice versa its absence for another quadrature) for arbitrarily
late times.

It is also evident from figure 5 that the dynamics of the system is divided into three different
regions. These regions are related to the amount of the energy stored in the system. The first
region appears for|ξ | 6 0.2–0.3, i.e. at small energies, the second one for 0.3 6 |ξ | 6 0.8,
which means an intermediate amount of energy, and the third one appears for 0.86 |ξ | when
the energy stored in the system is fairly large. The exact boundaries of these regions depend
on the parameters of the initial state of the system such as, e.g., the phaseθ of the Perelomov
coherent state. In the first and the third regions all physical observables in the two-atom
case have almost periodic time dependences, and their dynamics is very similar to that in the
one-atom case. In the intermediate region however the dynamics in the case of two atoms
significantly differs from the dynamics of the IDJC model and becomes much less periodic.
This phenomenon can also be observed in the two-atom system in figures 2 and 3 which show
squeezing and the average photon number in this case. The explanation of this phenomenon
is the following. In the first region the field does not have energy to sufficiently excite the
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Figure 6. The population of the upper state|r, r〉 for (a) N0 = 1, r = 1
2 and (b) N0 = 2, r = 1;

arg(α) = π
2 .

atomic subsystem. The periodic behaviour in the third region is explained by the fact that the
atomic subsystem cannot absorb more than one or two photons in the one-and two-atom cases,
respectively. To support this explanation we have also plotted in figure 6 the dynamics of the
population of the excited state|1, 1〉. In figure 6 the field is initially prepared in the Glauber
coherent state equation (33) with different average numbers of photons given by|α|2. In the
case of two atoms, the population of the state|1, 1〉 has an upper boundary equal to 1.

Let us now consider the situation when the atomic subsystem is initially prepared in the
state of thermal equilibrium with temperatureTat , while the field is in the Glauber coherent
state|α〉. The overall density matrix of the system is

ρ = ρf ⊗ ρat (36)

with

ρf = |α〉〈α| ρat = 1

Z

N0/2∑
r=εN0

kr

r∑
m=−r
|m, r〉〈r,m|e−mβ

Z =
N0
2∑

r=εN0

kr
e−β(r+1) − eβr

e−β − 1

(37)

and

β = ω

kTat
.

The matrix elements of the density matrix (36) are given by

〈n| ⊗ 〈r,m|ρ̂|m′, r ′〉 ⊗ |n′〉 = e−|α|
2 αn(α∗)n

′

√
n! · n′! · δm,m

′δr,r ′
e−β

Z
. (38)
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Figure 7. The behaviour as a function of time ofS1,2(t) for (a) N0 = 1 and (b) N0 = 2, and for
the initial condition equation (36);β = 5, |α| = 0.5, arg(α) = π

2 .

Because of the long and cumbersome analytical expressions involved, we do not report
here on the evaluation of the quadratures for the initial condition equation (36). We find it
more convenient instead, with symbolic computer languages available, to develop a software
which allows us to derive all the necessary physical quantities. For this we used the MathCAD
program. Squeezing found for the initial condition equation (36) is shown in figures 7 and 8.
We considered two different situations. In figure 7 we show squeezing in the case when the
average energy in the atomic subsystem is initially larger than in the field mode. In figure 8 we
consider the opposite situation. The energy stored in the atomic subsystem att = 0 is given
by

Eat (t = 0) = N0

1 + eβ
(39)

while the field energy is given byEf (t = 0) = |α|2. Notice that the energy is measured in
units ofω. In figure 7β = 5,Eat (t = 0) = 0.538 forN0 = 2, andEat (t = 0) = 0.269 for
N0 = 1. In figure 8β = 1,Eat (t = 0) = 0.013 forN0 = 2, andEat (t = 0) = 6.693× 10−3

for N0 = 1. It clear that if the energy stored in the atomic subsystem is less than the energy
stored in the field mode, squeezing appears in both the one- and two-atom cases. However,
when the temperature of the atoms is such that their average energy is greater than the energy
of the field, no squeezing can be observed even in the one-atom case. It is interesting to notice
that in the one-atom case both field quadratures reach zero, with the same period. In the case of
two atoms the picture is more complex, but some kind of periodTR can still be identified inS2.

3. Conclusions

In this paper we have continued our investigation of thesu(1, 1) Tavis–Cummings model
which we introduced in [10]. The chosen boson realization of thesu(1, 1) algebra led us
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Figure 8. The behaviour as a function of time ofS1,2(t) for (a) N0 = 1 and (b) N0 = 2, and for
the initial condition equation (36);β = 1, |α| = 0.5, arg(α) = π

2 .

to an intensity-dependent Tavis–Cummings model. This model we solved exactly for the
eigenfunctions and eigenvalues of the Hamiltonian of the model. This allowed us to investigate
in detail the quantum dynamics of the model. The motivation for this study was to investigate,
in particular, the influence of a nonlinear interaction (the intensity-dependent coupling) on
the quantum dynamics and, more specifically, on the squeezing properties. We restricted our
analysis to the case when the field is initially prepared in the Perelomov or Glauber coherent
state which are most common in the literature on the IDJC model, while the atomic subsystem is
either in thermal equilibrium or in the ground state. For these initial states we obtained the time
behaviour of the average photon number and the population of the ground state, and investigated
the squeezing properties of the field states. The cases of one and two atoms present in the cavity
were analysed and compared. We also introduced a function which shows the lifetime of the
field in the squeezed state for an infinitely long time interval. This function proved to be useful
when analysing the conditions under which squeezing can be observed. The reported analysis
will be very helpful in the investigation, e.g., of the two-photon micromaser in the case when
there are many atoms present in the cavity at any given instant. The model of this problem
is again given by thesu(1, 1) Tavis–Cummings model, based, however, on a different boson
realization of thesu(1, 1) algebra. Notice also that the importance of cooperative effects for
the operation of the micromaser needs further clarification. In this and our previous work [10]
we have developed methods that should help us better understand these cooperative effects
on the operation of the two-photon,N0-atom micromaser. Work in this direction is now in
progress.
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Appendix A

Up to minor details the structure of the quantum space of the model coincides with that of the
conventional Tavis–Cummings model [19]. Namely, the quantum space of the system ofN0

two-level atomsHN0 is given by

HN0 =
⊕

krHr r = N0

2

N0

2
− 1, . . . , εN0 (40)

whereεN0 = 1
4(1− (−1)N0). Herer is Dicke’s occupation number,Hr ' C2r+1 is a complex

space of dimension(2r +1) corresponding to an irreducible representation of thesu(2) algebra
given by

|m, r〉 =
(

(r −m)!
(r +m)!(2r)!

)1
2
(S+)

r+m| − r, r〉
S±|m, r〉 =

√
r(r + 1)−m(m± 1)|m± 1, r〉

S3|m, r〉 = m|m, r〉
S2|m, r〉 = r(r + 1)|m, r〉

(41)

with S2 = (S3)
2 + 1

2(S+S− + S−S+).
In equation (40) the numberkr ,

kr = N0!(2r + 1)

( 1
2N0 + r + 1)!( 1

2N0 − r)!
reflects the multiplicity of choices which can be used to create an atomic configuration with
given quantum numbersr.

Appendix B

Here we give the exact forms of matricesQ(i), P (i), S(i) andT (i), i = 1, 2.
MatricesS(1)(M),Q(1)(M), P (1)(M) are given by

S(1)(M) = eit (EM+1,1,j
′
−EM,1,j−ω) j, j ′ = 1, 2 (42)

Q(1) = |ξ |3(1− |ξ |2)
( −√5

10 +
√

2
5

√
5

10 +
√

2
5

√
2

10√
5

10 +
√

2
5

−√5
10 +

√
2

5

√
2

10

)
(43)

P (1) =
( e−i(

√
10+
√

2)gt ei(−√10+
√

2)gt

ei(
√

10−√2)gt ei(
√

10+
√

2)gt

e−i
√

2gt ei
√

2gt

)
. (44)

Matrix T (1)(M) can be expressed in the form

T (1)(M)j,j ′ = |ξ |2M+1(1− |ξ |2)t (1)j,j ′ j, j ′ = 1, 2, 3 (45)

where

t
(1)
k,k′ =

M(M + 1)

4[(M + 1)2 +M2][M2 + (M − 1)2]



The intensity-dependent Tavis–Cummings model 8753

×
{
M(M − 1)

3
2 + (−1)k+k

′√
M[M2 + (M − 1)2][(M + 1)2 +M2]

+M(M + 1)
3
2

}
for k, k′ = 1, 2 (46)

and, otherwise,

t
(1)
k,3 = −

M2

2[(M + 1)2 +M2][M2 + (M − 1)2]
×
[
(M2 − 1)

√
M − 1−M2

√
M + 1

]
t
(1)
3,k′ = −

M2 − 1

2[(M + 1)2 +M2][M2 + (M − 1)2]
×
[
M2
√
M − 1− (M2 − 1)

√
M + 1

]
t
(1)
3,3 =

M2(M − 1)

[(M + 1)2 +M2][M2 + (M − 1)2]
×
[
(M + 1)

√
M − 1 + (M − 1)

√
M + 1

]
.

(47)

MatricesQ(2), P (2)

Q(2) = |ξ |4(1− |ξ |2)
( −3

√
26+9
√

6
52

3
√

26+9
√

6
52

2
√

6
13

3
√

26+9
√

6
52

−3
√

26+9
√

6
52

2
√

6
13

)
(48)

P (2) =
( e−i(

√
26+
√

2)gt ei(−√26+
√

2)gt

ei(
√

26−√2)gt ei(
√

26+
√

2)gt

e−i
√

2gt ei
√

2gt

)
(49)

while the elements of matrixS(2)(M) are given by

S(2)(M)k′k = exp
(
i
[
(−1)k

′√
4M2 + 12M + 10 +(−1)k

√
4M2 − 4M + 2

]
gt
)

(50)

for k, k′ = 1, 2, and

S(2)(M)3,k = exp
(
i(−1)k

√
4M2 − 4M + 2gt

)
S(2)(M)k′,3 = exp

(
i(−1)k

′√
4M2 + 12M + 10gt

)
S(2)(M)3,3 = 1.

(51)

The elements of matrixT (2) can be expressed in the form

T (2) = (1− |ξ |2)|ξ |2M+2t (2)(M) (52)

where

t
(2)
k,k′ =

M(M + 2)

4[M2 + (M − 1)2][(M + 2)2 + (M + 1)2]

×
{
(M2 − 1)

√
M(M − 1)

+(−1)k+k
′√
M(M + 1)[M2 + (M − 1)2][(M + 2)2 + (M + 1)2]

+M(M + 2)
√
(M + 2)(M + 1)

}
for k, k′ = 1, 2 (53)
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and, otherwise,

t
(2)
k,3 = −

M(M + 1)

2[M2 + (M − 1)2][(M + 2)2 + (M + 1)2]

×
[
(M − 1)(M + 2)

√
M(M − 1)−M(M + 1)

√
(M + 2)(M + 1)

]
t
(2)
3,k′ = −

(M − 1)(M + 2)

2[M2 + (M − 1)2][(M + 2)2 + (M + 1)2]

×
[
M(M + 1)

√
M(M − 1)− (M + 2)(M − 1)

√
(M + 2)(M + 1)

]
t
(2)
3,3 =

M2 − 1

[M2 + (M − 1)2][(M + 2)2 + (M + 1)2]

×
[
M(M + 2)

√
M(M − 1) + (M2 − 1)

√
(M + 2)(M + 1)

]
.

(54)

References

[1] Buck B and Sukumar C V 1981Phys. Lett.A 81132
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